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In this Brief Report, by using two-dimensional Hubbard models with �-flux phase and that on a hexagonal
lattice as examples, we explore spin-charge-separated solitons in nodal antiferromagnetic �AF� insulator—an
AF order with massive Dirac fermionic excitations �see details in text�. We calculated fermion zero modes and
induced quantum numbers on solitons �half skyrmions� in the continuum limit, which are similar to that in the
quasi-one-dimensional conductor polyacetylene �CH�x and that in topological band insulator. In particular, we
find some different phenomena: thanks to an induced staggered spin moment, a mobile half skyrmion becomes
a fermionic particle; when a hole or an electron is added, the half skyrmion turns into a bosonic particle with
charge degree of freedom only. Our results imply that nontrivial induced quantum number on solitons may be
a universal feature of spin-charge separation in different systems.
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I. INTRODUCTION

The Fermi-liquid-based view of the electronic properties
has been very successful as a basis for understanding the
physics of conventional solids. The quasiparticles of Fermi
liquid carry both spin and charge quantum numbers. How-
ever, in some cases, spin-charge separation occurs, providing
a different framework for thinking about the given systems.
It indicates that the systems have two independent elemen-
tary excitations, neutral spinon and spinless holon, as op-
posed to single quasiparticle excitation in conventional sol-
ids.

The first example is electronic systems in one spatial
dimension.1 The idea of solitons with induced quantum num-
bers started with the beautiful result obtained in the context
of relativistic quantum field theories by Jackiw and Rebbi.2

Based on this idea, spin-charge-separated solitons had a last-
ing impact on condensed-matter physics. In the long mol-
ecule chain of trans-polyacetylene, spin-charge separation
can occur in terms of soliton states.3 Due to induced fermion
quantum numbers, the soliton may be neutral particles with
spin 1/2 or spinless with charge �e. In two-dimensional
�2D� electronic systems, spin-charge separation has been a
basic concept in understanding doped Mott-Hubbard insula-
tor related to high-Tc cuprates.4,5 It is supposed that the par-
ticles can be liberated at low energies, with spin-charge sepa-
ration being an upshot in the “resonating valence bond”
�RVB� spin liquid state which was proposed by Anderson4 as
a new state of matter. Recently topological band insulator
�TBI� has attracted considerable attention because of its rel-
evance to the quantum spin Hall effect.6,7 It is pointed out
that there exist spin-charge-separated solitons in the presence
of � flux with induced quantum numbers.8–10

In this Brief Report we focus on a special class of anti-
ferromagnetic �AF� ordered state �nodal AF insulator�, and
we will show how spin-charge separation occurs. Nodal AF
insulator is an AF order �long range or short range� with
massive Dirac fermionic excitations. When there is no AF
order, fermionic excitations become nodal quasiparticles.
There are two examples of nodal AF insulator in condensed-
matter physics—one is an AF order on a honeycomb lattice

and the other is a �-flux phase together with a nonzero Néel
order parameter. Based on these examples, our results con-
firm that induced quantum number on solitons is an impor-
tant feature of the spin-charge separation in different sys-
tems.

II. FORMULATION

To develop a systematical formulation, we start with the
extended Hubbard models,

H = − �
�i,j�,�

tijĉi,�
† ĉj,� + U�

j

n̂j↑n̂j↓ − ��
i,�

ĉi,�
† ĉi,� + H.c.

�1�

Here ĉi,�
† and ĉj,� are electronic creation and annihilation

operators. U is the on-site Coulomb repulsion. � are the spin
indices for electrons. � is the chemical potential. �i , j� de-
notes the two sites on a nearest-neighbor link. n̂j↑ and n̂j↓ are
the number operators of electrons with up spin and down
spin. On a honeycomb lattice, the nearest-neighbor hopping
is a constant, ti,j = t; on a square lattice with �-flux phase, it
can be chosen as ti,i+x̂=�, ti,i+ŷ = i�.11–14 The partition func-
tion of the extended Hubbard models is written as Z
=�Dc̄Dc exp�−�0

�d�L�, where

L = �
j,�

c̄j,���� − ��cj,� + �
�i,j�,�

tijc̄i,�cj,� − U�
j

nj↑nj↓. �2�

c̄i,� and cj,� are Grassmann variables describing the elec-
tronic fields.

First let us derive the long-wavelength effective Lagrang-
ian of the hopping term in the extended Hubbard models.
Although �-flux phase does not break translational symme-
try, we may still divide the square lattice into two sublattices,
A and B. After transforming the hopping term into momen-
tum space, we obtain Ef =2��cos2 kx+cos2 ky. So there exist
two nodal Fermi points at k1= � �

2 , �
2 � and k2= � �

2 ,− �
2 �, and

the spectrum of fermions becomes linear in the vicinity of
the two nodal points. On a honeycomb lattice, after dividing
the lattice into two sublattices, A and B, the dispersion is
obtained in Refs. 15–17. There also exist two nodal points,

PHYSICAL REVIEW B 78, 233104 �2008�

1098-0121/2008/78�23�/233104�4� ©2008 The American Physical Society233104-1

http://dx.doi.org/10.1103/PhysRevB.78.233104


k1= 2�
�3

�1, 1
�3

� and k2= 2�
�3

�−1,− 1
�3

�, and the spectrum of fer-
mions becomes linear near k1,2. In the continuum limit, the
Dirac-type effective Lagrangian describes the low-energy
fermionic modes for both cases,

L f = i�̄1	����1 + i�̄2	����2, �3�

where �̄1=�1
†	0= ��̄↑1A , �̄↑1B , �̄↓1A , �̄↓1B� and �̄2=�2

†	0

= ��̄↑2B , �̄↑2A , �̄↓2B , �̄↓2A�.15–17 	� is defined as 	0=�0 � �z,
	1=�0 � �y, and 	2=�0 � �x, where �0= � 1 0

0 1 �. �x, �y, and �z

are Pauli matrices. We have set the Fermi velocity to be of
unit vF=1.

In the strong coupling limit, U
 t, there always exists an
AF spin-density wave �SDW� order in the extended Hubbard
models. Introducing Stratonovich-Hubbard fields for the spin
degrees of freedom,13 we obtain the partition function as Z
=�Dc̄DcDB exp�−�0

�d�L�, where the Lagrangian is given by

L = �
j,�

c̄j,���� − ��cj,� + �
�i,j�,�

tijc̄i,�cj,� −
3

2U
�

j

B j
2

+ U�
j

�− 1� jB j · c̄j�cj �4�

with Pauli matrices �= ��x ,�y ,�z�. Here B j is a vector de-
noting spin configurations, B j = �Bj�n j, where �Bj�=�0 repre-
sents the value of localized spin moments and n j is a unit
vector describing the Néel order parameter. In the AF or-
dered state, the mass gap of the electrons is given as m
=�0U. Then starting from Eq. �4�, we get the same long-
wavelength effective model of nodal AF insulator,18–20

Leff = �
�

i�̄�	����� + m��̄1n · ��1 − �̄2n · ��2� , �5�

where �=1,2 labels the two Fermi points.

III. ZERO MODES ON HALF SKYRMIONS

In this section we will study the properties of topological
solitons. Instead of considering topological solitons with in-
teger topological charge �skyrmions�, we focus on solitons
with a half topological charge, �d2r 1

4�
0��n ·��n���n= 1
2 .

Such soliton is called a half skyrmion �meron�. A meron with
a narrow core size �the lattice size a� is characterized by n
=r / �r�, with r2=x2+y2→�.21–28 In the core of a meron, �r�
	a, we have n→ �0,0 ,1�. To stabilize such a soliton, one
may add a small easy-plane anisotropy on the Néel order.

Around a meron configuration, the fermionic operators
are expanded as

�̂��r,t� = �
k�0

b̂�ke−iEkt��k�r� + �
k�0

d̂�k
† eiEkt��k

† �r� + â�
0��

0�r� ,

�6�

where b̂�k and d̂�k
† are operators of k�0 modes that are

irrelevant to the soliton states discussed below. ��k
† �r�

= ��↑�Ak
0� ,�↑�Bk

0� ,�↓�Ak
0� ,�↓�Bk

0� � are the functions of zero
modes. â�

0 are annihilation operators of zero modes.
To obtain the zero modes, we write down two Dirac equa-

tions from Eq. �5�,

i�x	1�1
0 + i�y	2�1

0 + mn · ��1
0 = 0 �7�

and

i�x	1�2
0 + i�y	2�2

0 − mn · ��2
0 = 0. �8�

First we solve the Dirac equation for �1
0. With the ansatz

�1
0 =


�1�x̃�e−i�

�2�x̃�
�3�x̃�
�4�x̃�ei�

� ,

we have

�x̃�2 = �3, �x̃�3 = �2,

�x̃�1 = −
�1

x̃
+ �4, �x̃�4 = −

�4

x̃
+ �1, �9�

where r= �r��cos � , sin �� and x̃= �r�
m . The solution has been

obtained in Ref. 29 as

�1�x̃� = �4�x̃� = 0, �2�x̃� = �3�x̃� = exp�− x̃� . �10�

So the solution of �1
0 becomes



0

exp�− x̃�
exp�− x̃�
0

� .

To solve �2
0, we transform the equation i�i	i�2

0

−mn ·��2
0=0 into

Ui�i	i�̃2
0U−1 + mUn · ��̃2

0U−1 = 0, �11�

where U=ei�	0/2, U	iU
−1=−	i, and U−1�2

0U= �̃2
0. Then the

solution of �2
0 is obtained as



0

− exp�− x̃�
exp�− x̃�
0

� .

It is noticeable that from the above solutions of zero
modes, the components �↑1A

0 , �↓1B
0 , �↓2A

0 , and �↑2B
0 are all

zero.

IV. TOPOLOGICAL MECHANISM OF SPIN-CHARGE
SEPARATION

For the solutions of zero modes, there are four zero-
energy soliton states �sol� around a half skyrmion which are
denoted by �1+� � �2+�, �1−� � �2−�, �1−� � �2+�, and �1+� � �2−�.
�1−� and �2−� are empty states of the zero modes �1

0�r� and
�2

0�r�; �1+� and �2+� are their occupied states. Thus we have
the relationship between â�

0 and �sol� as

â1
0�1+� = �1−�, â1

0�1−� = 0, â2
0�2+� = �2−�, â2

0�2−� = 0.

�12�
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First we define the total induced fermion number opera-

tors of the soliton states, N̂F=��N̂�,F, with

N̂�,F �
 :�̂�
†�̂�:d2r = �â�

0�†â�
0 + �

k�0
�b̂�k

† b̂�k − d̂�k
† d̂�k� −

1

2
.

�13�

::�̂�
†�̂�:: means normal product of �̂�

†�̂�. From the relation
between â�

0 and �sol� in Eq. �12�, we find that �1�� or �2��
have eigenvalues of �

1
2 of the total induced fermion number

operator N̂F,

N̂1,F�1�� = �
1

2
�1��, N̂1,F�2�� = 0,

N̂2,F�2�� = �
1

2
�2��, N̂2,F�1�� = 0. �14�

Another important induced quantum number operator is

the staggered spin operator, Ŝ��,��
z = 1

2�i�Aĉi
†�zĉi

− 1
2�i�Bĉi

†�zĉi=
1
2 � : ���̂↑1A

† �̂↑1A+ �̂↓1B
† �̂↓1B− �̂↓1A

† �̂↓1A

− �̂↑1B
† �̂↑1B�+ ��̂↑2A

† �̂↑2A+ �̂↓2B
† �̂↓2B− �̂↓2A

† �̂↓2A

− �̂↑2B
† �̂↑2B�� :d2r. For the four degenerate zero modes, it can

be simplified into Ŝ��,��
z �sol�= 1

2 �N̂2,F− N̂1,F��sol�. Let us show
the detailed calculations. From the zero solutions of �↑1A

0 ,
�↓1B

0 , �↓2A
0 , and �↑2B

0 , we obtain the following four equations:

�
 :�̂↑1A
† �̂↑1A:d2r��sol� � 0,

�
 :�̂↓1B
† �̂↓1B:d2r��sol� � 0,

�
 :�̂↓2A
† �̂↓2A:d2r��sol� � 0,

�
 :�̂↑2B
† �̂↑2B:d2r��sol� � 0. �15�

Using the above four equations, we obtain

Ŝ��,��
z �sol� =
 d2r�−

1

2
:��̂↑1A

† �̂↑1A + �̂↓1B
† �̂↓1B + �̂↓1A

† �̂↓1A

+ �̂↑1B
† �̂↑1B�: +

1

2
:��̂↑2A

† �̂↑2A + �̂↓2B
† �̂↓2B

+ �̂↓2A
† �̂↓2A + �̂↑2B

† �̂↑2B�:�sol��
= −

1

2
�N̂1,F − N̂2,F��sol� .

Then we calculate the two induced quantum numbers de-
fined above. Without doping, the soliton states of a half skyr-
mion are denoted by �1−� � �2+� and �1+� � �2−�. One can eas-
ily check that the total induced fermion number on the
solitons is zero from the cancellation effect between the two

nodals N̂F�1−� � �2+�= N̂F�1+� � �2−�=0. It is consistent with
the earlier results to forbid a Hopf term for the low-energy
theory of two-dimensional Heisenberg model.30 On the other
hand, there exists an induced staggered spin moment on the
soliton states �1−� � �2+� and �1+� � �2−�,

Ŝ��,��
z �1−� � �2+� =

1

2
�1−� � �2+� ,

Ŝ��,��
z �1+� � �2−� = −

1

2
�1+� � �2−� . �16�

The induced staggered spin moment may be straightfor-

wardly obtained by combining the definition of Ŝ��,��
z and

Eq. �14� together.
When half skyrmions become mobile, their quantum sta-

tistics becomes important. The half skyrmions show similar
behavior of vortices in the XY model; it can move on dual
lattices and feel an effective �-flux phase. One can see the
detailed kinematics of the topological excitations in Refs. 23
and 25.

Let us examine the statistics of a half skyrmion with an
induced staggered spin moment. In CP�1� representation of
n, a “bosonic spinon” is introduced by n=z�z with z= �

z↑
z↓

�
and zz=1. Since each bosonic spinon z carries 1

2 staggered
spin moment, an induced staggered spin moment corre-
sponds to a trapped bosonic spinon z. On the other hand, a
half skyrmion can be regarded as a � flux of the bosonic
spinon, 1

2��
����a�d2r= 1
4��d2r
0��n ·��n���n= 1

2 , with a�

� i
2 �z��z−��zz�. To be more explicit, moving a bosonic

spinon z around a half skyrmion generates a Berry phase �

to z→z�= �
z↑e

i�

z↓e
i� � where �=�
����a�d2r=�. As a result, a

bosonic spinon z and a half skyrmion �meron or antimeron�
share mutual semion statistics. Binding the trapped bosonic
spinon, a mobile half skyrmion becomes a fermionic par-

ticle. We may use the operator f̂� to describe such neutral
fermionic particle with half spin. The relation between the
zero-energy states and the fermionic states is given as �1+�
� �2−�= f̂↓

†�0� f and �1−� � �2+�= f̂↑
†�0� f �the state �0� f is defined

through f̂↑�0� f = f̂↓�0� f =0�. We call such neutral object �fer-
mion with �

1
2 spin degree freedom� a �fermionic� “spinon.”

Now we go away from half filling. It is known that when
a hole �electron� is doped, it is equivalent to removing �add-
ing� an electron. Without considering the existence of half
skyrmions, the hole �electron� will be doped into the lower
�upper� Hubbard band. The existence of zero modes on half
skyrmions leads to the appearance of bound levels in the
middle of the Mott-Hubbard gap.22 The hole �electron� will
be doped onto the bound states on the half skyrmion and then
one of the zero modes will be occupied. When one hole is
doped, the soliton state is denoted by �1−� � �2−�. One can
easily check the result by calculating its induced quantum
numbers �Table I�. On one hand, there is no induced stag-

gered spin moment, Ŝ��,��
z �1−� � �2−�=0. On the other hand,

the total fermion number is not zero, N̂F�1−� � �2−�=−�1−�
� �2−�. These results mean that such soliton state is a spinless
“holon” with positive charge degrees of freedom. After bind-
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ing a fermionic hole, the soliton state �holon� does not have
an induced staggered spin moment. Thus the holon obeys
bosonic statistics and becomes charged bosonic particles.
When one electron is doped, the soliton state is denoted by

�1+� � �2+�. The induced quantum numbers of it are N̂F�1+�
� �2+�= + �1+� � �2+� and Ŝ��,��

z �1+� � �2+�=0. Such soliton
state is also a bosonic particle with a negative charge but
without spin degrees of freedom. We call such a soliton state
an “electon” to mark the difference with the word “electron.”

Finally we get a topological mechanism of spin-charge
separation in nodal AF insulators. There exist two types of
topological objects—one is the fermionic spinon and the
other is the bosonic holon �or the bosonic electon�. The ex-
istence of a large Mott-Hubbard gap of electrons is very
important to protect the spin-charge separation in the so-
called nodal AF insulator. Near the quantum critical point
where the AF order vanishes, �0→0, the zero mode may
disappear and our results cannot be reliable.

In a one-dimensional �1D� system, real spin-charge sepa-
ration may occur. As far as the low-energy physics is con-
cerned, the spin and charge dynamics are completely decou-

pled from each other. In 2D, real spin-charge separation in
nodal AF insulators cannot occur in the long-range AF order.
At high temperature, due to the screening effect, free half
skyrmions may exist. In the future we will study the decon-
finement condition of spin-charge-separated solitons and ex-
plore the properties of deconfined phases with real spin-
charge separation.

V. SUMMARY

By using 2D �-flux phase Hubbard model and the Hub-
bard model on a honeycomb lattice as examples, we explore
spin-charge separation in nodal AF insulator. The crux of the
matter in this Brief Report is the discovery of induced stag-
gered spin moment S��,��

z on half skyrmions in nodal AF
insulators. Based on such nontrivial induced quantum num-
ber, we classify four degenerate soliton states with zero
energy—two of them ��1−� � �2+� and �1+� � �2−�� represent
the up-spin and down-spin states for a fermionic spinon, an-
other state ��1−� � �2−�� represents a holon, and the last one
��1+� � �2+�� denotes an electon.
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